
AD-771 747

LAP6 USE OF THE S TU CKI-ORNS T£ IN TEXT
EDITING ALGORITHM

M. A . Wilkes

Washington University

Pre pared for:

Advanced Research Projects Agency
Department of Defense
Public Health Services

February 1970

DISTRIBUTED BY:

urn
National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

BEST
AVAILABLE COPY

Unclassified

Securit^Classification

DOCUMENT CONTROL DAT4 • R ^ 0
(Smeurily cUtsllicmtion ol till», body of abtlrmcl and indtxlng mnnolmllon mutl >e •ntmnd whm tfi» onrmtl nport I» clmaalllmdj

i. omoiNATiNC ACTIVITY (Cotpormlm mulhor) laa. REPORT secuniTv CLASSIFICATION

Computer Systems Laboratory
Washington University
St. Louis. Missouri

Unclassified

3 REPORT TITLE

2b. CH.OUP

LAP6 Use of the Stucki-Ornstein Text Lditing Algorithm

4. DESCRIPTIVE NOTES fTVp« ol ivpott mnd Incluilv daf)

» AUTHORISI (Flflnam: mlddlm Inltlml, Imtl nam»)

M. A. Wilkes

REPORT DATE

February, 1970
M. CONTRACT OR SRANT NO.

(!) DOCHARPA) Contract SD-302
*. PROJEC4^O.N1H(DRCR) Grant No. RR-00396

(I) ARPA Project Code No. 655

10. DISTRIBUTION STATEMENT

7«. TOTAL NO. OF PACES

^L
9. Oß I 76. NO. OF REFS

6
M. ORIGINATOR'S REPORT NUMBERIS)

Technical Report No. 18

»b. OTHER F £PORT NOISt (Any othat numbatm that may b* a»»**>»d
Ma tapoti) m

Distribution of this document is unlimited

II. SUPPLEMENTARY NOTES

IS. ABSTRACT

12. SPONSORING MILITArV ACTIVITY

ARPA - Intonnation Processing Techniques,
Washington, D.C. NIH.. Div. of Research

An algorithm which runs on a 2048-word LINC provides efficient on-line editing of

character strings virtually unlimited in length. Fixed address LINC tape holds the character

sequence in the manner of a scroll. Edited characters are spliced directly in or out of the

scroll as it moves across a display scope under the viewer's control. A 512 character

"playground" created at the splice point provides sufficient ease to permit changing the

scroll contents dynamically, and thereby simplifies several problems commoniy associated with

on-line editing. Compensatory inserting and deleting are practical. Inserted characters require

no special identification and scroll maintenance is automatic. Editing commands and editorial

text identifiers are eliminated, and the number of characters which can be inserted anywhere

is limited only by the length of the scroll. Line nu nbers, if provided, are resequenced

automatically as the scroll contents change. As little as 2% of the scroll is manipulated in

the memory at a time. Despite the relatively slow transfer characteristics of the tape,

performance is satisfactory on a LINC for scrolls up to 23 040 characters and is not strongly

dependent on the size of the playground. ReprodlKed by
NATIONAL TECHNICAL
INFORMATION SERVICE

U S Department of Commerce
Springfield VA 22151

Aft ^OM 4 A ^^ ««»LAC«« OO rOMM »«7». I JAM «4.
UW I MOV ••14/^ eBBOLIT« PON ARMV U«C.

«NICM IS

SBcurity Clasalflcation

Security Clatiirication

KEY WONDfl

Scroll editing

scope editing

on-line editing

ape editing

LAP6

LINC

NOLK

LINK ■

Security CUesification

LAP6 USE OF THE STUCKI-ORNSTEIN

TEXT EDITING ALGORITHM

M. A. Wilkes

TiiCHNICAL REPORT NO. 18

February, 1970

Computer Systems Laboratory

Washington University

St. Louis. Missouri

::

•■

i

This work has been supported by the Advanced Research Frojects Agency of the
Department of Defense under cotract SD-302 and by the Division of Research Facilities
and Resources of the National Institutes of Health under Grant RR-00396.

1'
■

- ■ •.

Ü

I
I
I
I
!

I

i
I
I
I
I
I
I
*

Probably the most trequent single cause olenor.. .

is the oinission of a line (or more lines than one). . . .

We have been speaking. . of the papyrus roll,

which was practically the only form of book in use in

the Greek world until well into the Christian era.

Frederic G. Kenyon

Books and Readers In Ancient

Greece and Rome

-iii-

G

ABSTRACT

An alporithm which runs on a 2ü4H-word LINC provides eliicienl on-line

editing of charaeter strings virtually unlimited in length. Hxed address LINC

tape holds the cliaraeter sequence in the manner of a scroll. F.diled characters

are spliced directly in or out of the scroll as it moves across a display scope

under the viewer"s control. A 512 character "playground" created at the splice

point provides sutlicient ease to permit changing the scroll contents

dynamically, and thereby simplilies several problems commonly associated

with on-line editing. Compensatory inserting and deleting are practical.

Inserted characters require no special identification and scroll maintenance is

automatic. Hditmg commands and editorial text identifiers are eliminated, and

the number of characters which can be inserted anywhere is limited only by

the length of the scroll. Line numbers, if provided, are resequenced

automatically as the scroll contents change. As little as 1'7< of the scroll is

manipulated in the memory at a litre. Despite the relatively slow transfer

characteristics of the tape, performance is satisfactory on a LINC for scrolls

up to 23 040 characters and is not strongly dependent on the size of the

playground.

-IV-

No.

TABLE OF CONTENTS

Page
liiliDduction

I. Functional Description -,

The ScroM .

The Display ■,

■■" IDII Motion ,

Scroll Hditjng .

Automalk Remmibcriiip 4

II. Tiic Algonllini .

The Playground «

Creating the Playground «

Positioning the Seroil 7

Adding and Deleting Characters 7

Locating and hditing «

Numhering the Lines t)

Section Boundaries „

Joining the Strings ..

Playgrouiul Full ..

111. Efficiency .,

Fditing Efficiency .,

Playground Efficiency , c

Locating Efficiency ,, lo
Conclusions
 I o

References

I
I
I

I
1
I
I
I
I

LIST OF FIGURES

No. Page

il. The dispkiy 2

2. Moving the scroll from line 3416 to line 340 3

3. Writing on the scroll 3

14, Lines renumbered 3

5. Creating the playground 6

('. Locating hackward 6

7. Adding new inlorniation H

X. locating lorward and splicing 8

I1'. Working section lull 10

10, Continuation section liill 10

I I. Working section empty and playground expanded 12

12. Strings separated hy deleting 12

13. Playground shift 13

14. Playground full 13

INTRODUCTION

SL-hwariz has remarked dial "the process of editing code online is considered by some lo be the heart of a

good online system."1 Unfortunately one can easily observe that it is also considered by some to be remarkably

complicated. Editing consists first of finding, preferably visually, an editorial point of interest in a collecüon of

characters. It then entails only two things: adding characters and/or r^noving characters at that unique poim.

The inherent simplicity of this activity has been enthusiastically obscured in most computer environments.

A machine such as the L1NC2 b excellently suited to text manipulation. Display scope and keyboard aie

standard items, as is a two unit magnetic tape transport wh(ie pocket-sized premarked tapes are randomly-

addressable by block number in a manner similar to the TX-23 or the Atlas computer4 The LINC searches for a

requested block by moving the tape in either direction.

With this equipment it has been possible to realize a "scroll editing" scheme which is notable for its

simplicity, directness, and efficiency. Text, or manuscript, is held on a LINC tape which is treated as a scroll

wound onto the two tape hubs. Information on the part of the scroll over the tapehead is presented on the

scope. Motion of the scroll, to expose different parts of the manuscript, is directed from the keyboard.

The concept of scroll editing means that a scroll, theoretically unlimited in length, can be edited anyplace and

to any extent by writing directly on the scroll or by erasing information directly from the scroll at the unique

points of interest. The scroll remains homogeneous, although its contents, and probably its length, change

dynamically with every editorial correction.

Scroll editing is an integral part of the on-line LINC system LAPh,5 which provides a convenient context for

discussing first the operational characteristics and then the editing algorithm.

-2-

I. FUNCTIONAL DESCRIPTION

A LAP6 manuscript is any collection of LINC keyboard characters, originally entered by the user at the

keyboard or perhaps generated by a program, and retained by LAP6 on a LINC tape as a pennanent record of

keyboard input.

The Scroll

Manuscripts ■■»* retained indeTini'sly in LAPh files, but we are concerned here with the "current manuscript"

wlich is held in a reserved stroll area on the tape, displayed on the scope, and accessed by the user via the

key xta.fl.

In^ul characters are saved in a "working section" of the memory. As the section is repeatedly filled, its

contents are written in consecutive blocks in the scroll area. A block is simply the transfer unit between tape and

memory, the characters carry smoothly across block boundaries, producing a continuous string on the tape. 512

character codes fill one block.

The Display

The scroll is displayed as in Figure I, which shows five lines of the current manuscript together with line

numbers 3412 through 3417. The line numbers are not part of the manuscript. They are supplied automatically

by LAP6 and are provided only at the display to help orient the viewer. The last line number displayed, 3417,

uientifies the "current line."

Figure I. The Display

I
I
I
I
I
(

i

Manuskript lines are added lo the scroll at (he current line and temiinalea by striking an undisplayed

erdiirimc key. bOI . The l-.OL automatically causes the current line number to be incremented.

kite display rei:iains centered as the viewer edits, with lines automatically scrolled oil or onto the top of the

display to compensate lor the changes. The frame si/e is under knob control and is determined only by what the

viewer decides is easy to read.

The viewer can do only three things with the scroll: he can move it to look at dillerent parts, he can add

lines to it. and he can erase lines Irom it.

Scroll Motion

The stroll can be moved in either direction at any time to "roll up" the present view and expose a ditierent

part of the manuscript, which automatically establishes a new current line. The viewer directs the scroll motion

Irom the keyboard by typing either an arrow and a line number, as in Figure J|a). or by typing one of tour

undisplayed key combinations (chosen simply because they lie under the left hand) which move the scroll

forward (to a higher line number I or backward. nM frame or one line.

I
I
I
I
I

(a) (b)

Figure 2. Moving the scroll from line 3416 to line 340.

Figure 3. Writing on the scroll. Figure 4. Lines renumbered.

The inecl.anism itself is less impurlant than the ability to move the scroll easily and directly to other

positions. Forward and backward pushbuttons would be more nearly ideal. The line numbers specifically are not

required for this operation and are generally used for making only gross adjustments to the scroll position,

analogous to finding one's place in printed manuscript by first locating the approximate area by page or chapter

number. The exact point of interest is then verified visually based on content. The visual verification is not only

preferred by most users, but implies that no further identification, such as explicit reference to line numbers or

matched character strings, is required in order to edit the manuscript.

Scroll Editing

Regardless of how the scroll is moved, or vv'iether it is positioned at the end of the manuscript or somewhere

in the middle, the display always presents a current line on which changes can be made to the manuscipt. If the

viewer wants to "insert" lines, he simply types them in. Starting with the situation shown in Figure 2(b), for

example, the new lines become line 341. then line 342, etc. (Figure 3). Alternatively, starting again with Figure

2(h). he strikes a delete key to remove line 340. Subsequent deletions will remove line 337, then line 336, etc.

The changes are integrated into the surrounding context as he types, and he does nothing further about them.

Within the limits of the total scroll area on the tape, the user can add or delete as many characters as he likes,

in any order, wherever he positions the scroll. The manuscript remains one continuous string of keyboard

characters accumulated on the tape, as it scrolls in and out of the memory, in exactly the same order as they

appear on the scope.

Automatic Renumbering

Lines are automatically renumbered by LAP6 as changes are made to the scroll. The numbers thus remain

sequential integers, changing dynamically to reflect the effect of editorial corrections. !f following Figure 3 the

user backs up the scroll two lines to establish 341 as the current line and adds new information, he will see by

locating forwd.1 into Figure 4 that the former lines 341 and 342 are now 342 and 343.

II. THE ALGORITHM

Most of the functional advantages of scroll editing derive directly from the editing algorithm which was first

proposed by Mishell J. Stucki and Severo M. Ornstein in discussions with the author during March 1965. Despite

subsequent refinement the playground concept and the organization of LINC tape and memory to accomodate it

are largely their cication.

Although the algorithm is here applied to a character string on a LINC tape, it is appropriate for any

randomly addressable storage device such as a disk or, if necessary, core memorv. Very little core memory is

required, however, and the size of the LINC memory, 2048 12-bit -vords, greatly motivated articulation of the

algorithm. In the LAP6 case the scroll uses a maximum of 768 words of memory. The total manuscript size and

manuscript line length are, however, virtually unlimited.

The Playground

The Stucki-Ornstein algorithm is based on the cor ^pt of a playground, created by separating the character

string in the memory at the current line to provide a free space for additional characters coming from the

keyboard. In Figure 2(b), for example, the playground has been created between ihe end of line 340 and the

beginning of the undisplayed line 341. Characters, picked up or discarded in the playground, are "müced" in or

out of ill*» scroll as it moves through the memory from one tape reel lo the other.

Creating the Playground

Figure 5 shows a manuscript on the tape in blocks 1 through 7 of the scroll area. ßS, WS, and CS are

256-word sections of memory corresponding in size to LINC tape blocks. If block 4 contains a line, say line 340,

which is requested by the viewer, block 4 is read into the memory and the string broken between lines 340 and

341. In Figure 5, X represents the end of line 340, the "working point," and Y the beginning of line 341, the

"continuation point." Block 3 is also read into the buffer section, BS, to provide continuity for the display. The

display shows the viewer that the scroll is positioned at line 340, and that the current line number is 341.

The original string is now treated as two separate strings. The first, or working string, i; contained in tape

blocks 1, 2, 3, and the previously mentioned working section, WS, up to point X. The second, or continuation

string, begins at point Y in the continuation section, CS, followed by tape blocks 5, 6, and 7. The algorithm

requires that tape and memory be thought of as continuous between block 3 and the left end of WS, and

between the right end of CS and block 5.

The shaded area in Figure 5 represents the playground, an expansion into the memory of the scroll area on

the tape. The playground happens to be the same size as a memory section or tape block, but this is net

required. It could be larger or smaller, its purpose being only to create "some" extra space at the point of

interest.

This organization of tape and memory to separate the string, create a free area between two strings, and

define the point X in the memory over which the user has control is basic to scroll editing.

MANUSCRIPT

SCROLL

MEMORY

Figure 5. Creating the playgrou id

MANUSCRIPT

! 4b 5

4a

BS
/ Display
Window /

SCROLL

MEMORY

Figure 6. Locating backward

I
i
I
!

Positioning the Scroil

If in Figure 5 the viewer repositions the scroll to, say, line 330, so that the scroll must be moved backward,

characters are transferred from the working section into the continuation section (Figure 6), until the point X is

at the end of line 330. Y is now at the beginning of line 331, and lines 331-340 are now at the beginning of the

continuation string. The playground has simply shifted left. Locating forward is identical, except that the

playground is shifted to the right.

T Adding and Deleting Characters

The primary purpose of creating the playground is, of course, to be able to handle new information.

Additional characters are stored in the playground starting at the working point as they are typed. X, and the

display, move into the playground the appropriate amount (Figure 7) keeping track of the end of the working

string. Adding new information shrinks the playground. Other than that, there is nothing special about the new

characters. As can be seen in Figure 7, the working string is still continuous from block 1 to point X.

Likewise, if the user deletes lines,* X moves the appropriate amount to the left, shortening the working string.

Deleting increases the size of the playground.

One obvious advantage of the scheme is that adding and deleting are compensatoiy. When initially created, the

playground can accomodate 512 characters.«• The total numl ' -laracters which can be added before a new

playground must be created is therefore 512 plus the number deleted.

In either case, since the changes are made exactly where they belong in the string, no further manipulation is

required by either the user or LAP6 in order to inccrporate them. The relationship of the working string to the

cc ntinuation string remains well defined, and there is no need to distinguish an "edited" from an "unedited"

manuscript.

The essential elements of the algorithm can be summarized:

1
I
I
I

1. Moving the scroll in either direction shifts the playground left or right, moving X and Y in

parallel.

2. Adding or deleting information causes the playground to shrink or expand, since only X is

moved. Point Y and the continuation string are temporarily ignored.

In what follows, combinations of these two activities are considered in connection with the line numbers, section

boundary conditions, and the full playground situation.

*LAP6 is line-oriented-, the algorithm is the same for character-oriented editing.

**Two character codes are stored per word.

-8-

T—
I

44 4b
I SCROLL

MEMORY

/ ws/
/ Display_/

Window r

Figure 7. Adding new infor a^ion

/

I
I
I

4a 4b 4c

BS ws /
/^ Display S

CS

Window

SCROLL

MEMORY

Figure 8. Locating forward and splicing

.9-

Locating and Editing

Figure 8 shows the new information added in Figure 7 being spliced into the working string by moving the

scroll forward. The part of the string originally contained in block 4 is now reconfigured in the memory in three

pieces (4a. 4b, 4c); only the working section contains the correct continuation of the string from block 3.

Since locating simply shifts the playground, the size of the remaining playground is the same in Figures 7 and

8. Thus, although the playground may eventually be filled, the added characters can be distributed throughout

the scroll. It follows also that changes made to one part of the grrol] may be compensated by changes made to a

different part.

Numbering the Lines

The line numbers are represented simply by two counters. One monitors the current line number, the other

the number of the last line on the scroll The trivial numbering scheme is possible because scroll editing does not

require that the lines have fixed identifiers.

When the scroll position is changed, the current line number counter is incremented or decremented. When

information is added or deleted, both counters are incremented or decremented. When the contents of the two

counters are equal, there is, by definition, no continuation string.

The current line number counter is incremented, therefore, whenever lines are added to the working string,

without regard to the source of the added information. Thus, as keyboard input is interspersed with forward

locating. (Figure 8). the "old" lines are automatically renumbered as they are brought from the continuation
string onto the scope.

Section Boundaries

When either X or Y reaches a section boundary, the section is either full or empty. In order to continue the

current operation the tape must be written or read.

The working section will be filled (X at the WS-CS boundary) either by locating forward or adding new

information. When this happens (for example, continuing to locate forward following Figure 8). WS, since it

contains the continuation from block i, is written in block 4 (Figure 9). WS is then transferred into BS, and X is

reset at the BS-WS boundary. This resetting keeps the working string continuous between blocks I. 2. i, 4, and

X in WS. It is not to be confused with increasing the size of the playground, which happens only when deleting.

The shaded area in Figure 9 thus represents only the size of the remaining playground; the playground itself

does not leave the working section. (Permitting X to continue into CS requires for some manipulations that CS

and WS switch roles, which is programmatically awkward.)

Only locating backward can fill CS. Following Figure 8 again, this puts Y on the WS-CS boundary (Figure

10), and the continuation section, since it continues into block 5, is written in block 4. Y is reset at the

right-hand boundary of CS.

■10-

SCROLL

MEMORY

Figure 9. Working section mil

BS/0isp.o,/WS

^Window T

CS

SCROLL

MEMORY

Figure 10. Continuation section full

I
I
I
I
I
I
i

■II-

-

i
I
I
I

In oilher Figure 9 or Figure 10 the original contents of block 4 are, of course, destroyed. However, because

block 4 was initially read into the memory, its space on the tape is free and no i^fonnation is lost. The memory

contains the same amouni of Information "NOT ON TAPF" that was entered as "new" information in Figure 7,

and consequently the si/.e of the playground is still the same.

The information not on the tape is therefore not necessarily inserted information. In Figure 9, for example, it

is the remainder of the 4c segment of the original contents of block 4. As the user works with the manuscript,

the tape blocks thus contain different images of the two string sequences at different times.

When the tape transfer is made, the display is interrupted for about 0.1 second. Since block 4 was the last

block read (Figure 5), the tape is properly positioned and there is little travel lime loss.

hither deleting or locating backward can leave the working section empty. If. startin with Figure 5.

information is deleted until X lies on the BS-WS boundary. ;hc 4a part of the suing is 10 longer in the

manuscript and the playground is effectively increased by »hat amount. Since the deleted characters are simply

characters which need not be written back on the tape, the additional playground created is represented by the

shaded area on the tape in Figure II. Since WS is a continuation from block 3, block 3 is read into WS (and

block 2 into BS). X is reset at the WS-CS boundary, and the working string is now contained only in blocks I, 2.

and WS up to point X The si/e of the playground, now masked by the transfer of block 3, is. of course, 512

(from Figure 5) plus the number of characters in 4a.

Similarly, had CS been emptied by locating forward, since its string is continued in block 5, block 5 would

have been read into CS and Y reset at the WS-CS boundary, making the continuation string begin at point Y in

CS followed by blocks 6 and 7.

If the user continues to delete following Figure 11, the two strings can become widely separated, as shown by

the shaded area on the tape in Figure 12. The working siring is now continuous between block 1 and WS. Figure

3 show., what happens if at this point the scroll is moved backward until the contii aation section is full. As CS

is written on the tape in block 4. segment 2b is moved from block 2 to block 4. and the additional playground

is shifted left into blocks 2 and 3. The shift is identical to the playground shift in Figure 6. but it is done on the

tape.

Joining the Strings

It the scroll is moved forward following Figure 12, WS will eventually be written as information moves

through the memory from block 4 to block 2. Clearly, locating at the last line is all that is required to join the

two string . When the last character is moved from Y to X. the working string is the entire string and the

playground is "pushed off' the end.

The LAPii user is never required to ja MM Mrings. He states system commands at any lime, regardless of the

position of the scroll or the extent ol liimg If tb" strings need to be joined (e.g.. to file the current

man'.script), LAPf) joins them automatically. This avoids unnecessary tape handling since under program control

the decision to join the strings can be based only on the extent of editing, and not influenced by the scroll

position. In any case, no scroll manipulation of a maintenance sort is ever required of the viewer.

-12-

SCROLL

MEMORY

WS *
£ Display,/

CS

Window

Figure II. Working section empty and playground expanded

2a » m 41
4b SCROLL

BS
/ Display/^

^Window "^

CS

MEMORY

Figure 12. Strings separated by deleting

-13-

ws
/^Displayy^

2b CS

SCROLL

MEMORY

Window

Figure 13. Playpouml shiti

1 2 3 .i ̂

6 7 SCROLL

MEMORY

BS WS
/ Display_^

^Window r

Figure 14. Playground full

■14-

Playgruund Full

The playground is 'al! when 512 characters in the memory are NOT ON TAPt, and when the last tape block

of the working string is contiguous to the first tape block of the continuation string. The situation of Figure 14

follows that of Figure 9 by adding enough characters to total 512. Since WS is the continuation from block 4.

and block 5 continues from CS. the blocks arc contiguous.

Al this point information about the current scroll position is saved and the two strings are joined

automatically as described above. A new playground is then created at the former scroll position. The result on

the scope and in the memory is identical to Figure 14. although the segments formerly NOT ON TAPF would

now be labelled "5a" and "5b" (as for Figure 5). ("S now continues into block 6. As far as the viewer is

evneemed there is no change.

it must be emphasized that a full playground in no way represents an awkward situation or interferes with the

ly.tem operation. The procedure for handling it is identical to executing two locate requests, except that it is

iUtomatic. The programming overhead incurred is therefore minor; in the LAPd case it is about thirty machine

instructions.

I ■15-

I

I

I

I

I
I
I
I
^

»11. EFFICIENCY

The sluiulurd conflgltrstiotl of LAP(» has a 4? block scroll which accomodales, at 512 characters per block,

2} 040 characters. The si/e has been found more than adequate for most LINC applications, although a few

have used scrolls as long as 270 blocks. Although the algorithm is unrelated to scioll size, its efficiency, of

course, is not.

Moving the sen rl through the memory as called for by the algorithm requires a little less than one second

per tape block. This includes reading the block into the continuation section, writing it back onto the scroll

from the working section, and checking the transfers. The write and check operations, for which the LINC

has to reverse the tape twice, are the most costly. The LINC tapes are read at regular travel speed of 23

blocks per second.

In practice, the user is aware of frequent but brief tape motions. Long delays are infrequent, due to a

variety of influences which will be discussed. In any case, our experience in the LINC environment has shown

that being able to see the tape move makes any delay more tolerable.

Editing Efficiency

There are no editing commands, which reduces both typing time and errors, and the explicit activity of

adding and deleting characters probably cannot be further simplified. The response on the scope is always

instant ineous. Since the scroll is properly positioned this is true even when the user edits across a boundary

of the working section. A delayed response is possible in thf editing situation only if the playground fills up.

Playground Efficiency

Although the user is unaware of the playground per sc. he may notice some extra tape motion if it fihs

up. depending on how far the current line is from the last line.* In most situations, however, the playground

never fills up, despite extensive editing, because uf the compensatory deleting effect. Some users have never

observed it.

For the same reason the si/e of the playground when initially created is not critical. Since delays due to a

lull playground are seldom incurred, increasing the size of the playground does not significantly affect the

general efficiency.

Reducing the playground's size, however, will eventually degrade performance. Although it is difficult to

determine a smallest tolerable size, the playground should clearly not be smaller than a typical manuscript

entry, i.e.. than the least number of characters which might be inserted before any are deleted. Preferably it

should be a multiple of that number. In LINC program preparation, for example, a manuscript entry is an

instruction line of typically ten characters. Our experience with the 512 character playground indicates that

•The I.AP6 stroll is "open-ended" only in fhe direction of the last line, tfficienc/ can be somewhat improved by

"smoothing" the scroll in either direction, whichever distance is shorter. On the one-tap«.- tAHfi system overall tape allocation

is more efficient if one end of the scroll is fixed.

-l(l-

iliis muliiple of about 50 times the si/e of an entry is probably more generous than necessary. When the data

are mailing lists 01 bibliographies lor whieli a typical entry is about 100 characters, performance, although

Moorer, is still generally ao eptable to most users. Acceptability, however, is undoubtedly influenced by the

fact that a lull playaround still requires no user action, except waiting, in order to continue editing. For

most situations the author would not recommend using a playground smaller than five times the size of a
typical entry.

The worst case situation regarding the playground occurs when a number of characters is added.and none

deleted, near the beginning of a long manuscript. Using a L\P(> "Add Manuscript" command, for example, a

filed manuscript can be added to the scroll manuscript at the current line. This amounts to inserting one

manuscript in the middle of another, but the playground fills up once per block of incoming manuscript.

Provision is made lor ihe LAP6 user to break the scroll into separate manuscripts, i.e.. temporarily eliminate
the continuation string, first.

Locating Efficiency

To reduce the delay involved in repositioning the scroll. LAP6 uses one of two techniques to move the

scroll. The first moves it through the memory at about one second per block as described. The other uses a

"scroll index" to determine the block number of the scroll block containing the requested line. It then moves

the tape, at 23 blocks per second, directly to the required block.

The scroll index is a table of line numbers, each entry occupying one memory word corresponding to a

scroll block. Kvery time the contents of the working section are written on the scroll in block n. the current

line number is recorded in the Mth word in the index. The location of a particular line can later be

detrmined by comparing pairs of index entries.

This »econd technique is used whenever moving the scroll through the memory will not change the string

sequence on the tape. This is the case when there is no continuation string, or when no editorial changes

have been made since the working and continuation strings were last j> ined. The 23 to I saving is

considerable when the viewer is simply locating and reading, as. for example, when first finding his place in
the manuscript.

In the algorithm as presented here the playground is external to the character string on the tape, that is. it

is created without disturbing the scroll sequence. Although the temptation exists to embed the playground

physically in the string, this eliminates the possibility of ever using the faster technique to move the scroll.

The two strings thus separated will always have to be rejoined, even when no editorial changes have been

made. In the same manner the auionfltlic rejoining of the strings described earlier will have to be based on
scroll position alone.

If the playground is externally created, however, one scroll position can simply be abandoned in favor of

another. A new playground is then created at the destination.

The combination of techniques keeps the locating delays from dominating the editing situation. If the user

is only reading, the faster technique is used automatically. If he is editing, he tends to spend more time

typing than he does moving the tape, despite the fact that the tape will in this case move at Ihe slower rate.

17-

("lunging one LIIUKKIOI in the first block ol u thirty block munuscript. then, will cost the user about

thirty seconds when I APd n joins the two strings. On the other hand, il extensive changes are made in the

same manuscript, a pro -ss which may vke the user several hours, the sum of all the locating delays will, if

the locating pallem is sequential, still be only thirty seconds.

-18-

CONCLUSIONS

The elTidencv of scroll editing is primarily influenced by the transfer characteristics of the scroll device,

rather than by limitations inherent in the algorithm. Even with a relatively slow device, however, the balance

between the amount of data which can be efficiently handled and the amount of core memory required is

excellent. Using a LINC tape, a ratio of total scroll size to transfer unit size of 45 to 1 is reasonably

efficient. Further, the 45-block scroll size is not itself a limitation in most applications of the 2048.word
LINC.

In situations where a longer scroll is needed, one would recommend either a device with faster transfer

characteristics, such as a disk, or an increase in the size of the transfer unit. The total scroll area can be

quadrupled, for example, without significantly reducing the efficiency, by making the working and

continuation sections in the memory each the equivalent of four tape blocks instead of one. This is possiole

on some of the larger memory LINCs now available.«

Surprisingly, perhaps, the concept of creating "some" working space, a playground. - in the middle of a

character string presents no special problems. The algorithm can be programmed in about 700 LINC

instructions." including the display, and the investment required specifically to handle the playground itself is

trivial. Nor is the efficiency of the algorithm especially sensitive to the playground's size. In practice the

algorithm has. if anything, performed better than anticipated.

Scroll editing has been in routine use by about 2,000 people on all varieties of LINCs since the summer of

1%7. The technique has been found excellent for extensive editing of long character strings, and the resulting

manuscript structure is simple and straightforward. As a result it is used for data preparation in a variety of

applications including the preparation of chemical formulae for molecular graphics work, bibliographies for

information retrieval systems, flow charts, and a variety of programming languages.

The popularity of scroll editing is as much attributable to its operational ease as to its efficiency. The

elimination of scroll maintenance and editing commands have minimized the user's responsibility, and the

editing process itself is direct, reliable, and unencumbered.

•The micro-LINC 300. LINC-8. and PDP-12 all hive memoriei expandable lo 32.000 words.

I
I

-19-

REFERENCES

5. M.A. Wilkes, LAP6 Handbook, Computer Research Laboratory Tech. Rep. No. 2, Washington
University, St. Louis, May 1967.

6. M.A. Wilkes, LAP6 Manuscript Listings, Computer Systems Laboratory, Washington University, St.
Louis, May 1967.

i '• Jl- Schwartz, "Online programming," Comm. ACM, vol. 9, pp. 199-202, March 1966.

12. W.A. Clark and C.E. Molnar, "A description of the LINC," in Computers in Biomedical Research,

vol. 2, R.W. Stacy and B. Waxman, eds.. New York: Academic Press, 1965, pp. 35-66.

I 3- RL- Best and T.C. Stockebrand, "A computer-integrated rapid-access magnetic tape system with

fixed address," Proc. Western Joint Computer Conf. 1958, New York: American Institute of
| Elec'uioal Engineers, 1959, pp. 42-46.

4. T. Kilburn, R.B. Payne, and D.J. Howarth, "The Atlas supe.visor," Computers: A Key to Total

f Systems Control, 1961 Eastern Joint Computer Conf., AFfPS Proc, vol. 20, New York: Macmillan,
1961, pp. 279-294.

I
I
I
I
I
I
I
I
I
I
I
1

